Aly, M., & Kojima, H. (2020). Acute moderate-intensity exercise generally enhances neural resources related to perceptual and cognitive processes: A randomized controlled ERP study. Mental Health and Physical Activity, 19, 100363. https://doi.org/10.1016/j.mhpa.2020.100363
Browne, S. E., Flynn, M. J., O’Neill, B. V., Howatson, G., Bell, P. G., & Haskell-Ramsay, C. F. (2017). Effects of acute high-intensity exercise on cognitive performance in trained individuals: A systematic review. Progress in brain research, 234, 161-187. https://doi.org/10.1016/bs.pbr.2017.06.003
Chang, Y. K., Tsai, C. L., Huang, C. C., Wang, C. C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: general or specific cognitive improvement?. Journal of Science and Medicine in Sport, 17(1), 51-55. https://doi.org/10.1016/j.jsams.2013.02.007
Coco, M., Buscemi, A., Guerrera, C. S., Di Corrado, D., Cavallari, P., Zappalà, A., ... & Perciavalle, V. (2020). Effects of a bout of intense exercise on some executive functions. International journal of environmental research and public health, 17(3), 898. DOI: 10.3390/ijerph17030898
Esmaeilzadeh, S., & Siahkouhian, M. (2019). Validity of the modified Conconi test for determining of the maximal lactate steady state in young male athletes. Journal of Applied Exercise Physiology, 14(28), 15-27. doi: 10.22080/jaep.2017.9678.1467.[In persian]
Heisler, S. M., Lobinger, B. H., & Musculus, L. (2023). A developmental perspective on decision making in young soccer players: The role of executive functions. Psychology of Sport and Exercise, 65, 102362. https://doi.org/10.1016/j.psychsport.2022.102362
Jung, M., Ryu, S., Kang, M., Javadi, A. H., & Loprinzi, P. D. (2022). Evaluation of the transient hypofrontality theory in the context of exercise: A systematic review with meta-analysis. Quarterly Journal of Experimental Psychology, 75(7), 1193-1214. https://doi.org/10.1177/17470218211048807
Khandekar, P., Shenoy, S., & Sathe, A. (2023). Prefrontal cortex hemodynamic response to acute high intensity intermittent exercise during executive function processing. The Journal of General Psychology, 150(3), 295-322. https://doi.org/10.1080/00221309.2022.2048785
Latzman, R. D., Elkovitch, N., Young, J., & Clark, L. A. (2010). The contribution of executive functioning to academic achievement among male adolescents. Journal of Clinical and Experimental Neuropsychology, 32(5), 455-462. https://doi.org/10.1080/13803390903164363
Loprinzi, P. D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health promotion perspectives, 8(4), 255–262. doi: 10.15171/hpp.2018.36
Ludyga, S., Pühse, U., Lucchi, S., Marti, J., & Gerber, M. (2019). Immediate and sustained effects of intermittent exercise on inhibitory control and task-related heart rate variability in adolescents. Journal of science and medicine in sport, 22(1), 96-100. https://doi.org/10.1016/j.jsams.2018.05.027
Lutzenberger, W., Preissl, H., & Pulvermüller, F. (1995). Fractal dimension of electroencephalographic time series and underlying brain processes. Biological Cybernetics, 73, 477-482. DOI: 10.1007/BF00201482
Mehren, A., Diaz Luque, C., Brandes, M., Lam, A. P., Thiel, C. M., Philipsen, A., & Özyurt, J. (2019). Intensity-dependent effects of acute exercise on executive function. Neural Plasticity, 2019. https://doi.org/10.1155/2019/8608317
Mekari, S., Fraser, S., Bosquet, L., Bonnéry, C., Labelle, V., Pouliot, P., ... & Bherer, L. (2015). The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults. European journal of applied physiology, 115(10), 2189-2197. DOI:10.1007/s00421-015-3199-4
Moreau, D., & Chou, E. (2019). The acute effect of high-intensity exercise on executive function: a meta-analysis. Perspectives on Psychological Science, 14(5), 734-764. https://doi.org/10.1177/174569161985056
Park, S., & Etnier, J. L. (2019). Beneficial effects of acute exercise on executive function in adolescents. Journal of Physical Activity and Health, 16(6), 423-429. DOI: https://doi.org/10.1123/jpah.2018-0219
Pirkhaefi, A., & Bajalan, S. (2020). the clinical creativity therapy model (CCTM) on attention and memory in children with dyscalculia. Journal of Innovation and Creativity in Human Science, 10(2), 29-64. [In persian]
Shi, B., Mou, H., Tian, S., Meng, F., & Qiu, F. (2022). Effects of Acute Exercise on Cognitive Flexibility in Young Adults with Different Levels of Aerobic Fitness. International Journal of Environmental Research and Public Health, 19(15), 9106. https://doi.org/10.3390/ijerph19159106
Shibuya, K. I., Tanaka, J., Kuboyama, N., & Ogaki, T. (2004). Cerebral oxygenation during intermittent supramaximal exercise. Respiratory physiology & neurobiology, 140(2), 165-172. https://doi.org/10.1016/j.resp.2003.11.004
Smith, J. C., Nielson, K. A., Antuono, P., Lyons, J. A., Hanson, R. J., Butts, A. M., ... & Verber, M. D. (2013). Semantic memory functional MRI and cognitive function after exercise intervention in mild cognitive impairment. Journal of Alzheimer's disease, 37(1), 197-215. DOI: 10.3233/JAD-130467
Su, R., Wang, C., Liu, W., Han, C., Fan, J., Ma, H., ... & Zhang, D. (2022). Intensity-dependent acute aerobic exercise: Effect on reactive control of attentional functions in acclimatized lowlanders at high altitude. Physiology & Behavior, 250, 113785. https://doi.org/10.1016/j.physbeh.2022.113785
Sudo, M., Komiyama, T., Aoyagi, R., Nagamatsu, T., Higaki, Y., & Ando, S. (2017). Executive function after exhaustive exercise. European journal of applied physiology, 117(5), 2029-2038. DOI: 10.1007/s00421-017-3692-z
Tsai, C. Y., Li, R. H., Wang, C. C. (2022). Effect of acute resistance exercise to inhibitory control: Perspective of intensity and training. Quarterly of Chinese Physical Education, 36, 291-299.
Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41(10), 121-131. https://doi.org/10.1016/j.psyneuen.2013.12.014
Voss, M. W., Weng, T. B., Narayana-Kumanan, K., Cole, R. C., Wharff, C., Reist, L., ... & Pierce, G. L. (2020). Acute exercise effects predict training change in cognition and connectivity. Medicine and science in sports and exercise, 52(1), 131-140. doi: 10.1249/MSS.0000000000002115
Wang, C. H., Baumgartner, N., Nagy, C., Fu, H. L., Yang, C. T., & Kao, S. C. (2023). Protective effect of aerobic fitness on the detrimental influence of exhaustive exercise on information processing capacity. Psychology of Sport and Exercise, 64, 102301. https://doi.org/10.1016/j.psychsport.2022.102301
Zhu, Y., Sun, F., Li, C., Huang, J., Hu, M., Wang, K., ... & Wu, J. (2022). Acute effects of mindfulness-based intervention on athlete cognitive function: An fNIRS investigation. Journal of Exercise Science & Fitness, 20(2), 90-99. https://doi.org/10.1016/j.jesf.2022.01.003